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Next-generation sequencing (NGS) assays are a key compo-
nent of the modern oncology workflow. Beyond on-label 
drug prescriptions, tumor sequencing results can guide 

clinical trial enrollment and identify investigational drug opportu-
nities in individual patients. NGS data can also reveal other events 
of clinical relevance, such as germline pathogenic variants, phar-
macogenomics findings and clonal hematopoiesis drivers, which 
should be recognized and acted upon. However, clinical interpreta-
tion of NGS results often relies on manual procedures, which poses 
considerable challenges to the medical teams undertaking this task. 
First, variant annotation benefits from numerous resources devel-
oped by medical, biological and bioinformatics domains that are 
not easy to integrate. Second, agreeing on annotation criteria and 
rules to prioritize actionable findings is critical for consistent clini-

cal decision-making. Third, in the absence of on-label treatment 
options, patients must be matched with the specific portfolio of 
investigational therapies and clinical trials available in each hospi-
tal (or hospital network), which are subject to continuous changes. 
Failure to address these issues or the inability to perform them in 
a clinically acceptable time frame can impair the outcome of indi-
vidual patients and precision cancer medicine initiatives.

Clinical decision support systems (CDSS) can tackle these chal-
lenges by implementing efficient data analysis and reporting pro-
cesses. Several commercial CDSS software are currently available, 
but in-house solutions are often used to better accommodate the 
specific needs of each center. In fact, we believe that the capacity of 
academic institutions to develop custom CDSS accelerates the use 
of emerging biomarkers and promotes precision medicine across 
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healthcare professionals. We have therefore developed the MTBP, 
a CDSS that creates a unified framework to interpret sequencing 
results across the seven comprehensive cancer centers that form 
Cancer Core Europe (CCE)1 at present. Importantly, the portal 
is integrated in the CCE clinical workflows and provides a single 
platform to distribute the results and support shared discussions 
at scale2. Seamless communication among clinical investigators is 
essential to leverage the collective expertise of the community in 
this era of rapidly changing precision-oncology landscape. To our 
knowledge, this is an unprecedented effort for codeveloping new 
anticancer therapies and biomarkers under a harmonized infra-
structure in Europe. Here, we describe our approach and discuss the 
results of using the MTBP in a consecutive cohort of 500 advanced 
solid tumors evaluated from January 2019 to January 2021 in the 
context of the Basket of Baskets (NCT03767075) study, an ongo-
ing CCE multibasket phase 2 clinical trial matching molecular bio-
markers with immunotherapies and targeted drugs.

Results
Functional interpretation of cancer variants. Interpretation of 
NGS data first requires elucidating whether the specific variants 
observed in the tumor alter the wild-type function of cancer genes, 
as not all of them have equal biological consequences. Besides the 
identification of the individual tumor genomic drivers, this analy-
sis enables matching patients to biomarkers defined by functional 
criteria, such as ‘activating’ mutations in a given oncogene or 
‘loss-of-function’ alterations in a given tumor suppressor. Of note, 
close to one-third of the cancer biomarkers reported at present rely 
on interpreting the functional effect of variants found in drug targets 
(Fig. 1a). This number will likely continue to grow as genes involved 
in more cellular processes, such as DNA damage repair, epigenetics, 
metabolism and immune regulation, become actionable.

The MTBP interprets the functional relevance of cancer variants 
under an allele-centric perspective (Fig. 1b). In other words, a given 
BRCA1 mutation known to disrupt the activity of the wild-type 
allele will always be declared as functionally relevant (i.e., loss of 
function) regardless of tumor-context considerations such as the 
germline versus somatic origin of the variant, the status of the sec-
ond allele and/or the cancer type in which it is observed, which are 
contemplated in the actionability analysis (next section). Multiple 
genomic knowledge resources can be integrated for a more com-
prehensive variant functional annotation, but currently there are no 
well established guidelines on how to do it. Therefore, we agreed on 
criteria considered to provide strong or very strong supporting evi-
dence (>90% and >99% of certainty, respectively) as extrapolated 
from previous work3 and based on three distinct sources of knowl-
edge (Fig. 2a,b). First, the MTBP inspects whether the gene variants 
observed in the patient’s tumor have an already well-reported effect. 
Note that different types of assertions can be equally mapped to the 
context-agnostic notion of a variant being functionally relevant; 
for example, a given BRCA1 mutation can be considered as a puta-
tive loss-of-function event when it is known to predispose to early 
breast/ovarian cancer, as well as when it is associated with clinical 
efficacy of poly-ADP ribose polymerase inhibitors. Therefore, the 
MTBP queries a number of expert knowledge bases that continu-
ously gather results of clinical, experimental and population genetic 
studies4–10 according to the standard procedures defined for each of 
their respective scopes (e.g., pathogenicity classification of germline 
variants11), and assertions compatible with the functional relevance 
(or lack thereof) of the observed variant are matched as appropriate. 
The aggregation of these different knowledge bases, which are not 
often used in combination, enables a more comprehensive use of 
international curation efforts (Fig. 2c).

Second, if no variant effect is reported, or the information is 
inconclusive and/or supported by weaker evidence (Methods), 
then the portal evaluates whether bona fide biological assumptions 

(such as whether a given premature termination codon is likely to 
trigger nonsense-mediated decay) can be applied (Fig. 2d). These 
assumptions are largely based on accepted criteria to identify 
loss-of-function variants in Mendelian disease genes11,12. Of note, 
the MTBP refines the use of some of these criteria by leveraging the 
aggregated content of the aforementioned knowledge bases, which 
for example help to delineate protein regions that are critical for a 
given tumor suppressor function (Methods). This exemplifies the 
value of the MTBP for integrating the knowledge available in the 
community and developing ensemble bioinformatics models.

Third, if none of these bona fide assumptions can be applied or 
fulfilled, then computational-based metrics are used as the lowest 
level of supporting evidence. For example, hotspots of somatic muta-
tions observed across previously sequenced cancer cohorts point 
out protein sites that are preferentially targeted by tumors and thus 
relevant for the disease development in both oncogenes and tumor 
suppressors13. To reduce the number of false positives, the MTBP 
uses methods that consider underlying genomic mutational pro-
cesses to declare the observed accumulation of mutations as statisti-
cally significant14,15. In addition, functional impact predictions can 
be used to estimate whether other variants drive loss-of-function 
events. Among all the methods developed with that purpose, we 
decided to use deleteriousness score calculations16, with stringent 
thresholds exhibiting a 90% predictive value as required for strong 
supporting criteria3, based on the results of our own benchmarking 
(Fig. 2e).

Variants that cannot be classified as functionally relevant or 
functionally neutral according to any of the aforementioned criteria 
appear as ‘of unknown relevance’ in the MTBP reports. For the CCE 
prospective cohort presented here, composed of 500 solid tumors 
profiled by NGS panels (from 326 to 350 cancer genes evaluated, 
depending on the assay; Table 1), the MTBP identified a median 
of three (interquartile range (IQR), two to four) functionally rel-
evant mutations (single-nucleotide changes and/or small indels) per 
tumor. Overall, and after excluding mutations assumed to be non-
relevant (such as those that do not alter the protein sequence or are 
common polymorphisms), a total of 26% of the tumor mutations 
were classified as (putative) functionally relevant, whereas 9% were 
classified as (putative) neutral (Fig. 3a). One-fourth of these clas-
sifications were solely based on bioinformatic predictions, which as 
discussed is the lowest level of supporting evidence. Even with the 
comprehensive functional annotation provided by the MTBP, most 
(65%) of the tumor mutations observed in cancer genes were thus 
classified as of unknown functional effect (although this number 
largely varies across genes; Fig. 3b). This illustrates our still-limited 
ability for interpreting the biological relevance of the genomic alter-
ations that occur in tumor cells. As drug prescriptions progressively 
move toward a more holistic consideration of the tumor genome 
(pathway and/or signature centric), we underscore the importance 
of using interpretation tools that are kept up to date with the knowl-
edge provided by emerging capabilities, such as high-throughput 
functional assays.

Clinical interpretation of cancer variants. The final objective of 
the MTBP is to help translate NGS results into the most appropri-
ate therapeutic decisions according to state-of-the-art evidence. 
Genomic alterations that influence anticancer drug response (sen-
sitivity or resistance) and are of diagnostic or prognostic value are 
continuously reported in the literature and scientific venues. Several 
international initiatives gather this information in specific knowl-
edge bases open for the access and feedback of the community6–8. 
However, these resources follow varying data models, and the accu-
rate aggregation of their content requires an extensive harmoniza-
tion of the lexicon, ontologies and variant representation syntax used 
by each. The MTBP implements this process with a semiautomatic 
pipeline that combines a number of bioinformatic mapping tools17,18 
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and manually annotated dictionaries. The adoption of information 
exchange standards in the community is crucial to mitigate the need 
for these efforts and facilitate genomic knowledge sharing19–21.

The MTBP matches the cancer biomarkers aggregated across 
these knowledge bases with the variants observed in the tumor for 
(i) a specific nucleotide and/or protein amino acid change (e.g., 
BRCA1:c.5468-1G>A or KIT:p.D572A); (ii) a variant category (e.g., 
EGFR in-frame deletions in exon 19); or (iii) a functional entity 
(e.g., FLT3 oncogenic mutations, as guided by the MTBP functional 
interpretation) (Fig. 4a). However, as mentioned before, variant 
actionability must also take into account tumor-context consid-
erations beyond the mere variant match, such as the concordance 
between the biomarker and patient’s cancer type (or a subtype 
thereof), the presence of co-occurring alterations that can influence 
the biomarker effect and the level of evidence that supports its clini-
cal utility at present (Fig. 4a). The MTBP pipeline factors in these  
considerations as appropriate and reports the results following  

the European Society for Medical Oncology (ESMO) Clinical 
Actionability of Molecular Targets (ESCAT) scale22, which is an 
extension of that previously presented by American expert associa-
tions23 (Fig. 4b).

The highest level of actionability corresponds to genomic altera-
tions matching on-label prescriptions or clinical expert group rec-
ommendations, and thus ready to be used in routine clinical practice 
(ESCAT level I; Fig. 4c). However, in the context of CCE initiatives, 
we mostly profile tumors of patients without standard-of-care 
therapeutic options available. Consequently, investigational and 
off-label drug opportunities based on preliminary clinical (ESCAT 
levels II and III) or even preclinical (ESCAT level IV) evidence 
are also considered. In these cases, we prioritize the allocation of 
patients to clinical trials, and one key feature of the MTBP is there-
fore to detect cases eligible for those open for recruitment across 
the connected centers, as detailed next. Of note, the CCE network 
hosts the Basket of Baskets study, a European multiarm phase 2 
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Fig. 1 | Clinical relevance of cancer gene variants. a, Overview of gene mutations (single-nucleotide variants and small indels) reported as biomarkers 
of cancer diagnosis, prognosis and/or drug response by three publicly available knowledge bases (CIViC (Clinical Interpretation of Variants in Cancer), 
OncoKB (Oncology Knowledge Base) and CGI (Cancer Genome Interpreter)6–8) at the moment of writing. An assertion corresponds to a reported 
biomarker effect for a given gene variant, in a given cancer type and with a given level of supporting evidence. Assertions supported by weaker or 
inconclusive evidence (as provided by the knowledge base metadata when appropriate; Methods) are excluded from these results. 1,000g, 1000 
Genomes Project; AF, allele frequency. b, Representation of distinct levels of interpretation for cancer gene variants. The functional relevance evaluates the 
allele-centric effect of the observed variant, whereas context-dependent interpretation factors in additional considerations (such as whether the variant is 
germline or somatic, co-occurring alterations in the same or other genes and/or the cancer type of the patient’s tumor). Questions that are addressed in 
each step are exemplified here for a given BRCA1 mutation (HRR, homologous recombination repair; PARPi, poly-ADP ribose polymerase inhibitors).
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basket trial for advanced tumors selected according to predefined 
molecular profiles (NCT03767075). Overall, 36% of the patients 
of the CCE cohort presented here were recommended for one of 
the Basket of Baskets treatment arms available at the moment of 

the molecular tumor board discussion (Fig. 5a). These were mostly 
associated with the use of immune checkpoint inhibitors in the 
presence of loss-of-function events in DNA damage repair genes, as 
estimated by the MTBP variant interpretation (Methods). However, 
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Fig. 2 | Interpretation of cancer gene variants. a, The MTBP classifies a given cancer gene variant as (putative) functionally relevant or neutral according 
to three distinct sources of evidence (named A, B and C here) or of unknown relevance if none of these criteria are fulfilled. Note that the knowledge bases 
listed here are those integrated at the moment of writing4–10, but their usage may be subject to changes depending on evolving needs and preferences. FI, 
functional impact; OncoKB-mut and OncoKB-biom refer to the biological and predictive relevance annotation of variants in OncoKB, respectively. b, Criteria 
supporting the variant functional classification are considered to provide strong (>0.9 certainty) or very strong (>0.99 certainty) evidence as extrapolated 
from the work in variant pathogenicity classification3, following the rationale described in the table. c, Aggregated knowledge base assertions (excluding 
those from genetics population data) at the moment of writing. As expected by the different scopes of each knowledge base and the long tail of lowly 
recurrent mutations, only a minority of the variants appear curated in more than one knowledge base, which stresses the importance of their aggregation to 
provide a comprehensive annotation. d, Graphical summary of some of the criteria used for assuming that a variant with null consequence type is disrupting 
the function of a given tumor suppressor (part of the evidence of type B; a). These are largely based on established rules to identify loss-of-function variants 
in Mendelian genes (Methods). e, The lowest level of evidence to estimate a given variant effect is based on bioinformatics metrics. For variants that are 
not located in mutation hotspots, we decided to use the combined annotation dependent depletion (CADD) score16 to estimate the functional relevance of 
missense mutations in tumor suppressor genes (TSGs), as functional impact predictions perform worse in other scenarios (data not shown). The method 
and associated thresholds were selected according to our own benchmarking, based on the performance observed for mutations with curated effects 
(upper violin plot) and in silico simulations (lower violin plot) (Methods). FN, false negative (given these thresholds); FP, false positive; TN, true negative; 
TP, true positive.
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the majority (60%) of these patients were not finally enrolled in 
the Basket of Baskets trial, mostly because of the deterioration of 
their clinical condition or subsequent screening failures. This fur-
ther emphasizes the importance of deploying systems that can sup-
port an efficient and rapid trial recruitment at the point of clinical 
decision-making.

The MTBP retrieves the trials’ eligibility criteria from in-house 
databases gathering clinical, pathological and molecular requisites. 
This information is curated following an ad-hoc syntax adapted to 
the growing complexity of cancer biomarkers, which are defined by 
the presence (or absence) of a given combination of genomic altera-
tions and/or genomic signatures. This syntax also defines prioriti-
zation rules in case that the allocation to multiple trials is possible, 
as well as variant interpretation nuances to be used by the MTBP 
interpretation framework. One example of the latter is the evidence 
required for considering variants in a given actionable gene as func-
tionally relevant; in general, we only match clinical trials with tumor 
variants whose effect is based on well-curated studies or bona fide 
biological assumptions, but lower evidence, such as bioinformatic 
predictions, is also considered for emerging biomarkers associated 
with less characterized genes. Upfront agreement on these details 
enables the MTBP to refine the actionability flags issued in the 
reports, which facilitates efficient discussions during the molecular 
tumor board meetings and increases the consistency of the clinical 
decision-making.

Importantly, the MTBP can be used to automate the detection 
of other events of potential clinical relevance. For example, and in 
collaboration with the CCE genetic counseling task force, we have 
established unified criteria to flag germline variants requiring genetic 
specialist referral (Methods). As a result, the MTBP issued genetic 
counseling alerts for 49 germline variants in 48 individuals (57 ± 13 
years) of the CCE cohort, which represent 13% of those with paired 
tumor/normal samples sequencing available (with a cancer type dis-
tribution similar to that of the overall cohort; Table 1). Incidentally, 
three (6%) of these variants showed a low variant allele frequency 
in the tumor sample, and thus, they would not have been contem-
plated as of potential germline origin with tumor-only sequencing 
data, as per published criteria24. Genetic counselor review deemed 
these findings as of clinical relevance in all the cases, although close 
to half (44%) of the variant carriers did not meet personal criteria 
for clinical germline testing25,26 (Fig. 5b). Moreover, a considerable 
(18%) proportion of these pathogenic germline variants were found 
in genes not associated with the patient’s index cancer, which fur-
ther complicates their discovery via standard guidelines-directed 
genetic testing. These results illustrate the importance of the oncol-
ogy setting for screening hereditary cancer susceptibility variants27 
and the value of the MTBP to streamline that task.

The MTBP technology. The MTBP provides a single unified 
framework for sharing and harnessing NGS data across CCE cen-
ters. Deidentified patient clinical and pathological information 
is fetched from a centralized electronic case report forms system, 
whereas sequencing data files are retrieved from different institu-
tional and external laboratories. Data transfer, storage and access 
are implemented by a set of technical measures in accordance with 
the European legal framework under compliance with data protec-
tion regulation (Methods). After data capture, the system triggers a 
number of pipelines for data integrity control, format harmonization 
and variant interpretation as appropriate. This ultimately creates the 
corresponding patient reports, which are immediately shared with 
the clinical investigators. The whole process is fully automated and 
thus performed in a negligible amount of time, which dramatically 
reduces the efforts required for case preparation. This facilitates our 
current turnaround time, which is less than 14 days from biopsy 
collection to report generation, as required in patients whose clini-
cal condition can rapidly deteriorate28.

The MTBP patient reports are HTML web-based documents 
accessible for the clinical investigators via a secure online platform2. 
These reports are discussed in weekly virtual molecular tumor 
board meetings, in which members of each CCE center connect 
from different locations and agree on clinical recommendations. 
As discussed before, genomic alterations are flagged in the MTBP 
report according to predefined expert actionability criteria, and all 
the results appear systematically organized in a user-friendly, read-
ily interpretable view (Fig. 5c). In addition, further information and 
variant annotation details are accessible via interactive elements of 
the HTML report, which empowers an in-depth revision of the con-
tent and supporting evidence. Although the MTBP can also distrib-
ute simplified reports in PDF format, we believe that working with 
interactive data-rich documents is more appropriate in the context 
of academic medical centers, in which molecular tumor boards dis-
cuss complex cases and serve as a venue for continued education in 
genomics-driven oncology. Of note, we observed a learning curve 
to use the MTBP system lasting for approximately 25 patients (Fig. 
5d). After that, the amount of time devoted to discussing each case 
averaged less than three minutes, which is key for scaling the pro-
cess to a large number of patients.

At the moment of writing, the MTBP system used by CCE ini-
tiatives supports the interpretation of genomics data (mutations, 
copy-number alterations, structural variants and mutational signa-
tures) and has recently incorporated gene expression analysis. In addi-
tion, and in the context of ongoing efforts to implement new clinical 
trial designs, we are currently working on the incorporation of emerg-
ing tumor profiling technologies such as proteomics, ex vivo drug 
screening and digital pathology. Ultimately, we envision the MTBP as 
a catalyst for systems-based precision oncology, capable of integrating 

Table 1 | Characteristics of the 500 tumors in the CCE 
prospective cohort

Characteristics Values

Age (y), median (IQR) 59 (49–67)

Female sex, n (%) 300 (60%)

Paired samplesa, n (%) 375 (75%)

Primary tumor sampleb, n (%) 270 (54%)

Tumor purityc, median (IQR) 60% (35–80)

Primary cancer type, n (%)

 Breast carcinoma 100 (20%)

 Colorectal adenocarcinoma 65 (13%)

 Ovarian epithelial tumor 55 (11%)

 Esophagogastric adenocarcinoma 30 (6%)

 Cholangiocarcinoma 25 (5%)

 Pancreatic adenocarcinoma 20 (4%)

 Cancer of unknown primary 15 (3%)

 Prostate adenocarcinoma 10 (2%)

 Salivary carcinoma 10 (2%)

Pleural mesothelioma 10 (2%)

 Gallbladder cancer 10 (2%)

 Other 150 (30%)

Patients with advanced/refractory disease considered for CCE clinical trials from January 2019 to 
January 2021. Note that the cohort is biased toward those cancer types that were more suited to 
the Basket of Baskets treatment arms opened during that time period. All samples were profiled by 
targeted NGS panels. aSequencing of paired white blood cells and tumor tissue samples identifying 
germline versus tumor somatic variants; only the tumor sample was sequenced otherwise. 
bSequenced tumor sample obtained from the primary tumor; sample was from a metastatic 
site otherwise. cPercentage of tumor content in the tumor sample as reported by the pathology 
assessment.
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multiple levels of molecular and imaging data and inform treatment 
decisions throughout the patient’s disease course. In addition, we have 
also created an open website (https://mtbp.org) that provides access to 
a lightweight version of the MTBP analytical framework. This public 
resource is intended for research purposes and only supports a general 
interpretation of gene variants that may be of interest for investigators 
outside our network (Extended Data Fig. 1).

Discussion
The MTBP provides a unified platform for implementing precision 
oncology strategies in a truly collaborative manner. As the complexity 
of cancer biomarkers continues to grow, automating the interpretation 
and reporting of sequencing results decreases the need for manual 
procedures and facilitates rapid, comprehensive and consistent clinical  

decision-making. In addition, the MTBP creates the infrastructure to 
systematically gather the molecular and clinical information in a ‘bio-
repository’ of data, which supports the discovery of new biomarkers 
and insights for future trial designs. However, deploying the MTBP 
across the CCE network raised multiple challenges, such as (i) ensur-
ing the interoperability with the information technology systems of 
each connected center; (ii) automating the retrieval of clinical, patho-
logical and sequencing data provided by different facilities; (iii) devel-
oping user-friendly interfaces for distinct user types, such as medical 
practitioners, project managers and data analysts; (iv) coordinating 
the efforts to agree on variant interpretation criteria and actionability 
prioritization; and (v) creating the associated resources, such as a data-
base with up-to-date information of the clinical trials open for recruit-
ment across the network. These tasks require expertise from domains 
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Nature Cancer | VOL 3 | February 2022 | 251–261 | www.nature.com/natcancer256

https://mtbp.org
http://www.nature.com/natcancer


Technical ReportNATurE CAncEr

such as medical software regulation, cybersecurity and front-end 
development, which is not easily available in the academic setting and 
thus creates needs for collaboration with industry partners. In con-
clusion, we believe that streamlining digital systems like the MTBP at 
the point of care is key to better address the challenges of delivering 
biomarker-driven oncology at scale, but the success of these initiatives 
relies on the long-term investment needed to develop and maintain 
the technology.

Methods
Ethical regulation. The Vall d’Hebron Institute of Oncology is the sponsor of 
the Basket of Baskets trial. The protocol was submitted through the Voluntary 
Harmonization Procedure and approved by the Medicines & Healthcare products 
Regulatory Agency in the United Kingdom. Subsequently, the competent 

authorities in Spain (Agencia Española de Medicamentos y Productos Sanitarios), 
France (Agence nationale de sécurité du medicament et des produits de santé), 
Germany (Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel), 
the Netherlands (Centrale Commissie Mensgebonden Onderzoek) and Sweden 
(Läkemedelsverket) provided local approval. Ethics committee approvals have 
been obtained in Spain, the United Kingdom, France, the Netherlands and 
Sweden under EduraCT project number 2018-005108-89. All patients signed an 
informed consent form for preregistration and another for the trial in the case of 
recruitment. The clinical and sequencing data transfer, storage and access complies 
with European legal and ethical regulations as appropriate.

Statistics and reproducibility. This article includes a description of a consecutive 
cohort of advanced tumor patients preregistered in the Basket of Baskets 
(NCT03767075) trial during a 2-yr period. No statistical method was used to 
predetermine sample size. No data were excluded from the analyses. The experiments 
were not randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment. The article describes general tumor genomic 
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findings aggregated at the cohort level, and the resulting descriptive numbers (no 
statistic tests were necessary) are available in the text, tables and figures.

MTBP in CCE (CCE-MTBP). Patient clinical and tumor pathological information 
is gathered in pseudo-anonymized electronic case report forms (ALEA system; 
https://www.aleaclinical.eu/). Molecular assay results are provided by CCE 
institutional facilities and commercial laboratories. Data is automatically 
transferred to the CCE-MTBP through secure protocols as appropriate. Upon 
receival of each data file the CCE-MTBP checks the integrity of the content and 
(if no issues are detected) several analytical pipelines are triggered to process the 
results and create the corresponding patient-centric report, which is made available 
to clinical investigators via an online secure platform. CCE-MTBP data governance 
is addressed through multiple technical, physical and legal measures (not disclosed 

here). The logs of each CCE-MTBP pipeline run are manually reviewed by the 
MTBP developers as part of our standard operating procedures, and email alerts 
are sent as appropriate when new results are available.

Public instance of the MTBP (public-MTBP). Access to a lightweight version of 
the MTBP genomics analytical pipeline has been made freely available at https://
mtbp.org. At the moment of writing, the public-MTBP supports the analysis of 
single-nucleotide variants and small indels, which can be manually uploaded via 
a VCF file (hg19/GRCh37 and hg38/GRCh38 coordinates supported) or through 
a free text box for genomic, cDNA and/or protein-based mutations (HGVS syntax 
with several reference systems supported). The public-MTBP provides a general 
interpretation of the functional and predictive relevance of the uploaded variants 
but does not issue actionability flags (such as potential eligibility for clinical trials 
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or genetic counseling alerts) that require additional patient information. Instead, 
the public-MTBP aims for a comprehensive variant annotation to support a 
detailed review according to different user’s needs.

Genomic alterations considered for the Basket of Baskets study. Genomic 
alterations considered for the use of atezolizumab in the first treatment module 
opened for the Basket of Baskets (NCT03767075) study opened during the 
evaluation of the CCE patient cohort described here are the following: BRCA1 
or BRCA2 loss-of-function mutations (arm 1A); MLH1, MSH2, MSH6 or PMS2 
loss-of-function mutations (arm 1B); POLE or POLD1 switch-of-function 
mutations (arm 1C); intermediate or high tumor mutation burden without an 
apparent mechanism for DNA damage repair malfunction (arm 1D); loss of 
function observed in other DNA damage repair genes (arm 1E); and CD274 
(PDL-1) copy-number amplifications (arm 1F). Note that the Basket of Baskets is a 
dynamic platform trial in which new treatment modules are progressively opened 
or closed through the corresponding amendments.

List of genes evaluated for germline variants conferring inherited increased 
cancer risk. These are the genes recommended by the American College of 
Medical Genetics and Genomics (ACMG SF v2.0 update), plus some additions 
(marked with an asterisk) agreed to be clinically actionable by the CCE Genetic 
Counseling Task Force. Of note, the MTBP issues genetic counseling alerts only if 
the germline variants observed in these genes are estimated to be loss of function 
based on well-curated evidence and/or bona fide biological assumptions, regardless 
of patient clinical information: APC, ATM*, BMPR1A, BRCA1, BRCA2, BRIP1*, 
CDH1*, CHEK2, MEN1, MLH1, MSH2, MSH6, MUTYH (only reported for 
homozygous or compound heterozygous MUTYH mutations), NF2, PALB2*, 
PMS2, PTEN, RAD51C*, RAD51D*, RB1, RET, SDHB, SDHC, SDHD, SMAD3, 
SMAD4, STK11, TGFBR1, TGFBR2, TP53, TSC1, TSC2, VHL and WT1.

MTBP annotation. The MTBP uses a combination of in-house and publicly 
available17,18 bioinformatic tools to transform the different formats produced by 
the CCE-MTBP data providers and the different variant nomenclatures accepted 
by the public-MTBP into a single unambiguous representation system. The MTBP 
annotates these data with multiple resources based on the classification schemes 
shown in Fig. 2 (functional relevance) and Fig. 4 (predictive relevance). Among 
these resources, the MTBP uses third-party knowledge bases that (i) formalize 
information about the variants’ effect by using predefined processes, (ii) are based on 
published biomedical literature and (iii) are committed to periodical updates. Variant 
nomenclature, terminology and taxonomy systems used to annotate the data are also 
unified across knowledge bases with a semiautomatic MTBP pipeline that is regularly 
updated. Additional filtering distinguishes knowledge base assertions supported 
by weaker or inconclusive evidence, as extracted from the corresponding metadata 
as appropriate (e.g., less than two or three stars in the ClinVar or CIViC evidence 
rating, respectively). Only resources open for academic research purposes are used in 
the public-MTBP4–10. The MTBP also implements bona fide biological assumptions 
to estimate the relevance of variants without conclusive curated effects, which are 
largely based on established rules to identify loss-of-function variants in Mendelian 
genes11 and subsequent refinements12. In the case of tumor suppressors (see Fig. 2d), 
these include canonical splice site disruptions and variants leading to a premature 
stop codon (likely) triggering nonsense-mediated decay mechanisms, which are 
considered very strong criteria (so-called PVS1); variants truncating/disrupting 
protein regions that are crucial for the tumor suppressor function, which are 
considered strong supporting criteria (PVS1_Strong) (of note, the identification of 
these essential protein regions is refined by analyzing location and consequence type 
of known loss-of-function variants, as gathered from the knowledge bases aggregated 
by the MTBP (manuscript in preparation)); and variants truncating/disrupting 
more than 10% of the wild-type tumor suppressor protein, which are considered 
strong supporting criteria (PVS1_Strong). Finally, if none of the previous evidence 
is conclusive, then the MTBP evaluates variants’ relevance with computational 
methods selected according to our own benchmarking (next section). On the other 
hand, the MTBP factors in additional tumor-context considerations to classify the 
actionability of variants deemed as functionally relevant following the ESMO-ESCAT 
recommendations22. Of note, the MTBP introduces two minor modifications to this 
classification framework (see Fig. 4b) due to (i) the lack of structured information 
in the knowledge bases to infer the trial design details and (ii) the use of biomarkers 
reported by clinical observations but only supported by case reports.

Data analysis. Knowledge bases that were used to obtain the results shown here 
are ClinVar, BRCA Exchange, CIViC, OncoKB, Cancer Genome Interpreter, 
1000 Genomes and gnomAD4–10. Mutation hotspots were considered separately 
for missense variants and in-frame insertions/deletions using P values lower 
than 5% as statistically significant following the methods based on the two- 
and three-dimensional protein structures, respectively14,15. Benchmarking of 
functional impact score methods was performed using the aggregated content of 
the aforementioned knowledge bases. Importantly, thresholds were also selected 
based on this benchmarking (Fig. 2e); in detail, missense variants with very high 
(>30) and very low (<10) Phred combined annotation dependent depletion16 
scores exhibited 90% of true functional and neutral calls, respectively, as required 
for being considered strong criteria3. In addition, their stringency was observed by 

simulating in silico all the possible nucleotide changes that can lead to missense 
variants in the most recurrently mutated tumor suppressor genes (Fig. 2e), which 
showed that in most cases, the variants remained unclassified when using these 
thresholds. All types of evidence supporting the functional relevance of the 
observed tumor variants were used to match them with cancer biomarkers in the 
figures, unless stated otherwise. The duration for discussing a patient’s case in the 
CCE molecular tumor board meetings (Fig. 5d) encompassed the presentation of 
the clinical summary, the discussion of the CCE-MTBP report content and the 
decision-voting process to reach a clinical recommendation.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited to the European Genome–phenome Archive, 
which is hosted by the European Bioinformatics Institute and the Centre for 
Genomic Regulation. Because of patient privacy constraints, the data are under 
controlled access and available upon reasonable request to the CCE Basket of 
Baskets Data Access Committee (bob@vhio.net) based on European Genome–
phenome Archive terms (see accession number EGAS00001005893 for further 
details). Source data are provided with this paper.

Code availability
Aggregated results shown in this article were created using Python (>3.0) NumPy, 
Pandas and Matplotlib open-source libraries. The code for the MTBP components 
reproducing the variant annotation framework discussed in the manuscript 
has been deposited to Zenodo with access restricted for research use only (see 
https://doi.org/10.5281/zenodo.6376428 for terms of use details). Access to 
other components available in MTBP production systems can be provided upon 
agreement with the copyright holders.
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Extended Data Fig. 1 | Public version of the Molecular Tumor Board Portal. a, The public MTBP is an open resource for research purposes that provides 
a lightweight version of the MTBP analytical pipeline. This public resource is accessed via a website (https://www.mtbp.org/) that offers an interface to 
upload the gene variants to analyze. At the moment of writing this manuscript, the public MTBP only supports the analysis of single-nucleotide variants 
and small indels. b, The public version of the MTBP does not issue actionability flags that require information that cannot be inferred from the generic 
input employed here and/or require interpretation nuances that may differ across investigators/institutions (such as matching with a given portfolio 
of clinical trials or the identification of germline incidental findings). Instead, the public MTBP provides a general interpretation of the functional and 
predictive relevance of the uploaded variants, with the aim of supporting a detailed review of the user according to his/her specific needs. c, Public MTBP 
website activity from the date of its release until the moment of writing this manuscript.
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